Transfer Function
-
2011.02.11 [Laplace Transforms] Convolution
Definition Laplace Transform끼리 곱을 해보자. 그 결과를 Inverse Transform 했을 때는 어떻게 나타날까? Convolution은 이 질문에 대한 직접적인 답이 될 것이다. 먼저 이해를 돕기 위해 다음 식을 살펴보자. 거의 보통은 위 식을 만족한다. 그냥 단순히 생각해 볼 수 있는 예제 f(x) = 1, g(x) = 1 를 떠올려보자. 각각의 Laplace Transform은 1/s이다. 우변은 1/s^2가 되겠지만, 좌변은 여전히 1/s이다. 만약 Laplace Trasnform의 곱을 f와 g에 대한 식으로 나타내고 싶다면 어떻게 할까? 그래서 고안해 낸 것이 바로 Convolution이다. 표현은 다음과 같다. 이것만 가지고서는 Convolution이 정확히 어떤 ..
-
2011.02.09 [Laplace Transforms] Derivatives and Integrals
Derivatives 지난번 포스트에서 'Laplace Transform은 Linear ODE를 푸는 강력한 방법이다.' 라고 소개해 놓고는 정확히 어떤 방법으로 ODE를 간단히 푸는데 Laplace Transform이 도움이 되는지에 대해서는 설명하지 않았다. Derivative를 Laplace Transform 하는 방법은 다음과 같다. f(t)의 Derivative인 f'(t)에 대해서 Laplace Transform을 수행하여 보면, 다음과 같이 식을 쓸 수 있다. Second-level Derivative에 대해서도 마찬가지다. 차수가 더 높아지더라도 결론적으로는 모든 Derivative가 Laplace Transform 이후에는 사라진다. 결론적으로는 단순한 대수학적인 방법만으로 식을 정리할 ..