Random variable
-
2012.02.23 [Pairs of RV] Joint Cumulative Distribution Function
개요 하나의 random variable을 생성하는 experiment에서의 event는 하나의 지점이나 혹은 line으로 된 interval 형태로 나타난다. 한편, 2개의 random variable을 얻을 수 있는 experiment의 경우에는, 각각의 outcome은 (x,y)와 같이 평면상의 한 점(point)으로 나타나고, event는 평면위의 point나 넓이를 갖는 영역으로 나타나게 된다. 2 random variable에서는 'joint CDF'를 이용해서 표현한다. 이 joint CDF의 범위는 일반적으로 아래와 같이 생각하면 된다. 특정 포인트 (x,y)를 기준으로 음의 무한대까지의 범위를 말한다. 정의 Random variable X와 Y의 joint cumulative distri..
-
2012.02.20 [Mixed RV] Conditioning
Conditional PDF Given an Event Random variable X와 그의 PDF f_X(x)에 대해서 P[B] > 0인 event B ⊂ S_X 에 대해서, event B에 대한 X의 conditional PDF는 다음과 같이 정의한다. 일반적으로 어떤 event B가 발생했을 때, 우리는 random variable X에 대해 conditional probability model을 정의할 수 있다. 함수 f_X|B(x)는 X와 관련되어 새롭게 만들어진 random variable에 대한 probability model이라고 할 수 있다. 따라서, 이는 다른 여타 PDF와 같은 성질을 갖게된다. 예를 들어 모든 x 범위에 대한 integral값은 역시 마찬가지로 1이다. 또한, 어떤..
-
2012.02.19 [Mixed RV] Probability Models of Derived RV
CDF and PDF of Derived RV Y = aX 이고, a > 0를 만족하는 두 개의 random variable X, Y의 CDF와 PDF는 다음과 같은 관계를 갖는다. 위 정리에 대한 증명은 다음과 같다. 만약 a가 1보다 크다면, 전체적인 Y의 PDF의 모양은 원래의 X의 PDF에서 늘어나는 형태가 될 것이고 a보다 작으면 범위가 줄어드는 형태가 된다. 형태는 아래 예제를 통해서 살펴보게 될 것이다. 한편 Y = X + b를 만족하는 random variable X, Y가 있을 때 다음을 만족한다. 역시 마찬가지로 다음과 같이 증명된다. Example 1 다음과 같이 삼각형 형태의 PDF가 있다고 하자. Y = aX인 random variable Y에 대해서 PDF를 구해보면, (단, a..
-
2012.02.12 [Continuous RV] Gaussian Random Variable
정의 어떤 random variable X의 PDF가 다음과 같을 때, X를 Gaussian random variable (μ, σ) 라고 한다. 여기서 μ는 어떠한 실수, σ > 0이어야 한다. PDF의 식이 상당히 복잡하게 되어있는데, 일단 어떤 모양인지 살펴 보면, 위와 같다. Peak가 μ에서 형성됨을 알 수 있으며, σ은 전체 그래프의 모양이 어떻게 퍼져 있는지를 나타낸다. 이러한 종모양의 커브는 확률이론을 적용할 때 자주 등장한다. 예를 들어 대한민국 남자의 평균 키 분포 라든지, 인간 전체의 아이큐 측정값 분포 같은 것을 살펴보면, 위와 같은 형태로 나타난다. 어떤 임의의 random variable X를 갖는 experiment를 비교적 많이 반복시행하면 위와 같은 형태로 나타난다. (이 ..
-
2012.02.11 [Continuous RV] Cumulative Distribution function (CDF)
Cumulative Distribution Function (CDF) Random variable X의 cumulative distribution function (이하 CDF)는 다음과 같이 정의된다. 이미 대부분의 주요한 property는 이전의 discrete RV에서의 포스트에서 설명이 되었으며, 이는 discrete RV 뿐 아니라 모든 RV에 적용할 수 있다. 특징 어떤 random variable X에 대해서 다음이 성립한다. CDF의 그래프는 0에서 시작해서 1에서 끝나게 되며, 단조 증가함수 (nondecresing)이다. RV의 값이 어떤 구간안에 속할 확률은 CDF 값의 차이와 같다. 이전 포스트에서 continuous RV에서는 특정 포인트에서의 확률이 정의되는것이 어려웠으나, 위와..
-
2012.02.10 [Discrete RV] Conditional PMF and Expected Value
Conditional Probability Mass Function 어떤 event A (P[A]>0)에 대해서, random variable X의 conditional PMF는 다음과 같이 정의된다. 이전 포스트에서 우리는 conditional probability에 대해 다뤘다. 이는 PMF에도 적용할 수 있다. 즉, 어떤 특정 event가 발생했을 조건하에 probability mass function가 정의될 수 있다. 이전의 theorem을 이용하면, 여러개의 conditional PMF를 이용해서 overall PMF를 이끌어 낼 수 있다. 어떤 random variable X에 대해 event space B_1, B_2, ... , B_m 이 존재할때 다음이 성립한다. 이전에 다뤘던 law ..