Derivative
-
2011.02.15 [Fourier Transforms] Properties and Convolution
Existence f(x)가 x축에서 Absolutely Integrable하고, 모든 유한한 구간에서 Piecewise Continuous할때, f(x)의 Fourier Transform이 존재한다는 것이 Theorem of Existence of the Fourier Transform이다. Piecewise Continuous에 대한 내용: http://blastic.tistory.com/94 Absolutely Integrable에 대해서는 아래 링크를 참조하기 바란다. (링크: https://ccrma.stanford.edu/~jos/st/Existence_Fourier_Transform.html) Absolutely Integrable을 간단히 설명하면, f(x)를 절대값으로 씌운 것, 즉 |f..
-
2011.02.14 [Fourier Transforms] Fourier Cosine and Sine Transforms
개요 Integral Transform 이란 주어진 함수를 Integral의 형태로 변환시키는 것으로, ODE와 PDE, Integral Equation을 푸는데 자주 사용되는 도구라고 할 수 있다. 이전에 다뤘던 Laplace Transform 역시 Integral Transform의 한 종류라고 할 수 있다. 여기서는 Fourier Transform에 대해 다뤄보겠다. Fourier Transform은 Fourier Integral으로부터 얻을 수 있다. Fourier Transform은 Fourier Cosine Transform과 Fourier Sine Transform으로 나뉘며, 각각은 Even Function과 Odd Function에 대해 사용한다. Fourier Cosine Transfo..
-
2011.02.09 [Laplace Transforms] Derivatives and Integrals
Derivatives 지난번 포스트에서 'Laplace Transform은 Linear ODE를 푸는 강력한 방법이다.' 라고 소개해 놓고는 정확히 어떤 방법으로 ODE를 간단히 푸는데 Laplace Transform이 도움이 되는지에 대해서는 설명하지 않았다. Derivative를 Laplace Transform 하는 방법은 다음과 같다. f(t)의 Derivative인 f'(t)에 대해서 Laplace Transform을 수행하여 보면, 다음과 같이 식을 쓸 수 있다. Second-level Derivative에 대해서도 마찬가지다. 차수가 더 높아지더라도 결론적으로는 모든 Derivative가 Laplace Transform 이후에는 사라진다. 결론적으로는 단순한 대수학적인 방법만으로 식을 정리할 ..
-
2011.01.27 [Continuous-time] Even and Odd Functions
정의 및 특징 Even Function과 Odd Function은 말 그대로 우함수와 기함수다. 먼저 위 그래프를 보면 Even Function은 g(t)축 대칭, Odd Function은 원점 대칭인것을 볼 수 있다. 이를 간단히 공식으로 나타내 보면, 아래와 같다. Even Function은 Time Scaling, Odd Function은 Time Scaling과 Amplitude Scaling을 같이하고 있다. 어떤 함수가 Even Function 혹은 Odd Function을 이루는 Part를 구하는 방법은 아래와 같다. 만약 어떤 함수가 Even Function이라면 g_odd(t) = 0 이 될 것이며, g_even(t) = g(t)를 만족하게 된다. 반대로 어떤 함수가 Odd Functio..