Continuous RV
-
2012.02.24 [Pairs of RV] Marginal PDF
Marginal PDF Random variable X,Y와 그의 joint PDF f_X,Y(x,y)에 대해서 다음이 성립한다. Joint PDF를 통해서 각 x, y에 대한 PDF를 구할 수 있다. Marginal PMF의 continuous RV 버전이라고 볼 수 있다. 이전에서 summation을 사용했다면 여기서는 continuous한 구간을 편적분 한 것이라고 보면 된다. 증명은 joint PDF의 정의로 부터, 위 식의 양변의 derivative를 구하면 곧, 위 정리가 그대로 나온다. 예제 다음과 같은 joint PDF가 있을 때, marginal PDF를 구하라. 앞의 정의를 이용해야 하는데, 여기서도 위끝 아래끝을 정확히 적는 것이 좋다. 먼저 joint PDF의 형태를 좌표평면상에서 ..
-
2012.02.15 [Mixed RV] Delta Function, Step Function
필요성 지금까지는 discrete RV와 continuous RV를 따로 떼어서 설명했다. Discrete RV는 PMF, continuous RV는 PDF라는 함수를 이용해 probability model을 나타냈다. 이러한 함수는 매우 중요한데, probability model의 특징을 나타내는 값들 (expected value, variance 등)을 구하는 계산을 편리하게 하기 때문이다. PMF는 덧셈, PDF는 integral을 사용하고 있다. 만약 우리가 이러한 두 가지 종류의 RV가 섞인 형태, 즉 mixed RV에 대해 이야기 하려면 여기서 설명하고자 하는 delta function이나 step function에 대해 알아야할 필요 있다. 이러한 함수들을 통해 discrete RV와 con..
-
2012.02.15 [Continuous RV] Named Types of Continuous RV
Uniform Random Variable 위와 같은 PDF를 가진 continuous RV를 uniform (a, b) RV 라고한다. 이전의 원판위에서 포인터 돌리기 예제를 일반화 한 것이라고 볼 수 있다. 일반적으로 a, b는 어떤 constant이므로, 1/(b-a) 역시 constant값이 된다. 따라서 CDF의 그래프는 일정한 기울기를 갖게된다. 이전의 continuous RV의 정리를 이용해서 다음의 정리를 얻을 수 있다. 한편 continuous RV와 discrete RV관계는 직접적인 관계를 갖는 것들이 꽤 많다. X를 uniform (a, b) RV라고 하고, K를 다음과 같다고 하자. 여기서 나타난 X 양옆의 기호는 이전에 설명했던 ceil (올림)이다. 이 때의 X는 discret..
-
2012.02.12 [Continuous RV] Gaussian Random Variable
정의 어떤 random variable X의 PDF가 다음과 같을 때, X를 Gaussian random variable (μ, σ) 라고 한다. 여기서 μ는 어떠한 실수, σ > 0이어야 한다. PDF의 식이 상당히 복잡하게 되어있는데, 일단 어떤 모양인지 살펴 보면, 위와 같다. Peak가 μ에서 형성됨을 알 수 있으며, σ은 전체 그래프의 모양이 어떻게 퍼져 있는지를 나타낸다. 이러한 종모양의 커브는 확률이론을 적용할 때 자주 등장한다. 예를 들어 대한민국 남자의 평균 키 분포 라든지, 인간 전체의 아이큐 측정값 분포 같은 것을 살펴보면, 위와 같은 형태로 나타난다. 어떤 임의의 random variable X를 갖는 experiment를 비교적 많이 반복시행하면 위와 같은 형태로 나타난다. (이 ..
-
2012.02.12 [Continuous RV] Expected Values
정의 및 유도 Continuous RV의 expected value는 다음과 같이 정의된다. 위 식의 유도는 discrete RV인 Y로 부터 시작하도록 하자. Discrete RV인 Y의 expected value는 다음과 같이 나타낼 수 있다. 나올 수 있는 value가 각각의 확률로 곱해진 합이 곧 expected value가 됨은 이전 포스트에서 이미 배웠다. Continuous RV에 이를 직접적으로 적용하기에는 불충분하다. 각각의 X의 특정 값이 일어날 확률은 0이기 때문이다. (PMF가 continuous RV에서 소용이 없다는 것은 이전에 여러번 언급이 되었다.) 따라서 우리는 discrete RV에서의 expected value의 정의를 continuous RV로 확장시킬 다른 방법을 찾..
-
2012.02.12 [Continuous RV] Probability Density Function (PDF)
시작 CDF 그래프의 기울기는 continuous RV의 가장 흥미로운 정보를 가지고 있다. 어떤 point x에서의 기울기는 곧 x근처에 X가 있을 확률을 나타내기 때문이다. 왜 그런지 이해하기 위해 다음 그래프를 살펴보자. 위 그림의 p_2를 식으로 써 보면, 즉, delta 만큼의 구간의 확률 p_2는 우리가 이전에서 배운대로 CDF의 차이를 통해서 얻을 수 있다. 여기서의 평균 기울기를 구해 보면, 이와 같게 된다. 만약 delta 값을 0에 가깝게 근접시키면 그것은 곧 x_2에서의 순간기울기와 같게 된다. 즉, 우리는 특정 지점에서의 기울기를 알 수 있게 된다. 특정 지점에서 continuous RV가 PMF값이 0이 된 반면, 여기서는 특정 지점의 기울기를 통해서 해당 continuous RV..