Probability mass function
-
2012.02.15 [Mixed RV] Delta Function, Step Function
필요성 지금까지는 discrete RV와 continuous RV를 따로 떼어서 설명했다. Discrete RV는 PMF, continuous RV는 PDF라는 함수를 이용해 probability model을 나타냈다. 이러한 함수는 매우 중요한데, probability model의 특징을 나타내는 값들 (expected value, variance 등)을 구하는 계산을 편리하게 하기 때문이다. PMF는 덧셈, PDF는 integral을 사용하고 있다. 만약 우리가 이러한 두 가지 종류의 RV가 섞인 형태, 즉 mixed RV에 대해 이야기 하려면 여기서 설명하고자 하는 delta function이나 step function에 대해 알아야할 필요 있다. 이러한 함수들을 통해 discrete RV와 con..
-
2012.02.12 [Continuous RV] Expected Values
정의 및 유도 Continuous RV의 expected value는 다음과 같이 정의된다. 위 식의 유도는 discrete RV인 Y로 부터 시작하도록 하자. Discrete RV인 Y의 expected value는 다음과 같이 나타낼 수 있다. 나올 수 있는 value가 각각의 확률로 곱해진 합이 곧 expected value가 됨은 이전 포스트에서 이미 배웠다. Continuous RV에 이를 직접적으로 적용하기에는 불충분하다. 각각의 X의 특정 값이 일어날 확률은 0이기 때문이다. (PMF가 continuous RV에서 소용이 없다는 것은 이전에 여러번 언급이 되었다.) 따라서 우리는 discrete RV에서의 expected value의 정의를 continuous RV로 확장시킬 다른 방법을 찾..
-
2012.02.10 [Discrete RV] Conditional PMF and Expected Value
Conditional Probability Mass Function 어떤 event A (P[A]>0)에 대해서, random variable X의 conditional PMF는 다음과 같이 정의된다. 이전 포스트에서 우리는 conditional probability에 대해 다뤘다. 이는 PMF에도 적용할 수 있다. 즉, 어떤 특정 event가 발생했을 조건하에 probability mass function가 정의될 수 있다. 이전의 theorem을 이용하면, 여러개의 conditional PMF를 이용해서 overall PMF를 이끌어 낼 수 있다. 어떤 random variable X에 대해 event space B_1, B_2, ... , B_m 이 존재할때 다음이 성립한다. 이전에 다뤘던 law ..
-
2012.02.04 [Discrete RV] Probability Mass Function (PMF)
정의 Discrete random variable X 의 probability mass function은 다음과 같이 정의된다. 단, P[X = x]는 X가 x가 될 probability를 말한다. 의미 및 예제 Probability mass function은 어떤 discrete random variable에 대한 probability model이다. 쉽게 이야기 하면, sample space를 구성하는 각각의 outcome마다 어떤 확률을 부여한 것이다. 예를 들어서, 앞면이 나올 확률이 80%, 뒷면이 나올 확률이 20%인 동전이 있다고 하자. Sample space는 S = {H, T}라고 하자. 이 experiment를 random variable X로 나타내면, X는 앞 또는 뒤 둘 중 하나의..