Convolution Sum
-
2011.02.21 [Discrete-time] Unit-sequence Response
유도 Unit-sequence에 대한 Response를 g[n]이라고 잡자. 그려면 다음과 같이 식을 쓸 수 있다. 이미 알다시피 u[n]은 δ[n]의 묶음이라고 볼 수 있다. 식을 통해서는 다음과 같이 나타낼 수 있다. 이제 두개의 식을 서로 묶어보자. 혼동을 막기 위해 u[n]쪽 Summation의 notation m 대신 p를 사용하겠다. 위 식의 괄호를 풀어내고 나서, 보면, δ[p]h[n-m]은 p = 0 일때만 0이 아닌 값을 가질 수 있다. 안쪽의 Summation에서 p는 -∞ 에서 m의 범위를 갖는데, 여기서 m은 바깥쪽 Summation의 범위를 따른다. 생각해보자. 바깥쪽이 m < 0 인 경우라면, 값은 언제나 0이 된다. 따라서 그러한 것들은 범위로 잡을 필요가 없다. 결론적으로 m..
-
2011.02.21 [Discrete-time] Convolution Sum
본론에 앞서 Discrete-time LTI System에서 Impulse Response는 개별적으로 적용된다. 예를 들어 x[n] = δ[n] + δ[n-1] 이라고 한다면, 이 때의 Response y[n]은 x_1[n] = δ[n] 일때의 Response y_1[n] 과 x_2[n] = δ[n-1] 일때의 Response y_2[n] 의 합으로 구성 된다. 즉, y[n] = y_1[n] + y_2[n] 이 된다. 여기서 설명하려는 Convolution 역시 이런 성질을 십분 이용하고 있다. 유도 위와 같은 x[n]과 h[n]이 존재한다고 하자. x[n]은 무수히 많은 Impulse들의 합으로 이루어져 있다. 다만 그 Magnitude가 Cosine함수를 따라가고 있을 뿐이다. 굳이 수학식으로 나타..